
1

HDF5 I/O PerformanceHDF5 I/O Performance

HDF and HDF-EOS Workshop VI
December 5, 2002

2

Goal of this talk

• Give an overview of the HDF5 Library tuning knobs
for sequential and parallel performance

3

Challenging task

• HDF5 Library has to perform well on
– Variety of UNIX Workstation (SGI, Intel, HP, Sun)
– Windows
– Cray
– DOE supercomputers (IBM SP, Intel Tflops)
– Linux clusters (Compaq, Intel)

• Variety of file systems (GPFS, PVFS, Unix FS)
• Variety of MPI-IO implementations
• Other tasks

– Efficient memory and file space management
• Applications are different (access patterns, many

small objects vs. few large objects, parallel vs.
sequential, etc.)

4

Outline

• Sequential performance
– Tuning knobs

• File level
• Data transfer level

– Memory management
– File space management: Fill values and storage allocation
– Chunking

• Compression
• Caching

– Compact storage

5

Outline

• Parallel performance

– Tuning knobs
• Data alignment
• MPI-IO hints
• HDF5 Split Driver

– h5perf benchmark

6

Sequential Performance

• Tuning knobs

7

Two Sets of Tuning Knobs

• File level knobs
– Apply to the entire file

• Data transfer level knobs
– Apply to individual dataset read or write

8

File Level Knobs

• H5Pset_meta_block_size
• H5Pset_cache

9

H5Pset_meta_block_size

• Sets the minimum metadata block size allocated
for metadata aggregation.

• Aggregated block is usually written in a single
write action

• Default is 2KB
• Pro:

– Larger block size reduces I/O requests

• Con:
– Could create “holes” in the file and make file bigger

10

H5Pset_meta_block_size

• When to use:
• File is open for a long time and

– A lot of objects created
– A lot of operations on the objects performed
– As a result metadata is interleaved with raw data
– A lot of new metadata (attributes)

11

H5Pset_cache

• Sets:
– The number of elements (objects) in the meta data

cache
– The number of elements, the total number of bytes, and

the preemption policy value (default is 0.75) in the raw
data chunk cache

12

H5Pset_cache
(cont.)

• Preemption policy:
– Chunks are stored in the list with the most recently

accessed chunk at the end
– Least recently accessed chunks are at the beginning of

the list
– X*100% of the list is searched for the fully read/written

chunk; X is called preemption value, where X is between
0 and 1

– If chunk is found then it is deleted from cache, if not
then first chunk in the list is deleted

13

H5Pset_cache
(cont.)

• The right values of X
– May improve I/O performance by controlling preemption

policy
– 0 value forces to delete the “oldest” chunk from cache
– 1 value forces to search all list for the chunk that will be

unlikely accessed
– Depends on application access pattern

14

Data Transfer Level Knobs

• H5Pset_buffer
• H5Pset_sieve_buf_size

15

H5Pset_buffer

• Sets size of the internal buffers used during data
transfer

• Default is 1 MB
• Pro:

– Bigger size improves performance

• Con:
– Library uses more memory

16

H5Pset_buffer

• When should be used:
– Datatype conversion
– Data gathering-scattering (e.g. checker board dataspace

selection)

17

H5Pset_sieve_buf_size

• Sets the size of the data sieve buffer
• Default is 64KB
• Sieve buffer is a buffer in memory that holds part

of the dataset raw data
• During I/0 operations data is replaced in the

buffer first, then one big I/0 request occurs

18

H5Pset_sieve_buf_size

• Pro:
– Bigger size reduces I/O requests issued for raw data

access

• Con:
– Library uses more memory

• When to use:
– Data scattering-gathering (e.g. checker board)
– Interleaved hyperslabs

19

HDF5 Application Memory Management

• H5garbage_collect()
– Memory used by HDF5 application may grow with the

growing number of the objects created and then released
– Function walks through all the garbage collection

routines of the library, freeing any unused memory

– When to use:
– Application creates-opens-releases substantial

number of objects
– “Number of objects” is application and platform

dependent

20

HDF5 File Space Management

• H5Pset_alloc_time
– Sets the time of data storage allocation for creating a

dataset
• Early when dataset is created
• Late when dataset is written

• H5Pset_fill_time
– Sets the time when fill values are written to a dataset

• When space allocated
• Never

– Avoids unnecessary writes

21

Chunking and Compression

• Chunking storage
– Provides better partial access to dataset
– Space is allocated when data is written
– Con:

• Storage overhead
• May degrade performance if cache is not set up properly

• Compression (GZIP, SZIP in HDF5 1.5 release)
– Saves space
– User may easily turn on their own compression method
– Con:

• May take a lot of time
• Data shuffling (in HDF5 1.5 release)

– Helps compression algorithms

22

Data shuffling

• See Kent Yang’s poster
• Not a compression; change of byte order in a

stream of data
• Example

– 1 23 43
• Hexadecimal form

– 0x01 0x17 0x2B
• Big-endian machine

– 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x17 0x00 0x00
0x00 0x2B

• Shuffling
– 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01

0x17 0x2B

23

00 00 00 01 00 00 00 17 00 00 00 2B

00 00 00 00 00 00 01 17 2B

00 00 00 01 00 00 00 17 00 00 00 2B

00 00 00

24

Chunking and compression
benchmark

• Write one 4-byte integer dataset 256x256x1024
(256MB)

• Using chunks of 256x16x1024 (16MB)
• Random integers between 0 and 255
• Tests with

– Compression on/off
– Chunk cache size 16MB to 256MB
– Data shuffling

25

Chunking Benchmark
Time Definitions

• Total
– Time to open file, write dataset, close dataset and close

file

• Write time
– Time to write the whole dataset

• Average chunk time
– Total time/ number of chunks

26

Performance improvement

0.24474.57111.4.5-prerelease

0.48098.69501.4.4 release

Average time to
write a 16MB chunk
In seconds

Total time
(Open-write-close)
in seconds

Release version

27

Effect of Caching (H5Pset_cache)

3.48674.66256MBYes

630.89672.5816MBYes
File size
102.9MB

3.635.79256MBNo

5.435.60716MBNo
File size
268.4MB

Write time in
seconds

Total time in
seconds

CacheCompression

28

Effect of data shuffling
(H5Pset_shuffle + H5Pset_deflate)

78.26883.35367.34MB

629.45671.049102.9MB

Write TimeTotal timeFile size

Compression combined with shuffling provides
•Better compression ratio
•Better I/O performance

29

Effect of chunk caching and data shuffling

3.47682.972256MB

43.25782.942128MB

78.26883.35316MB

Write TimeTotal timeCache

H5Pset_cache + H5Pset_shuffle + H5Pset_deflate

•Caching improves chunk write time

30

Compact storage

• Store small objects (e.g. 4KB dataset) in the file
– C code example:

plist = H5Pcreate(H5P_DATASET_CREATE);
H5Pset_layout(plist, H5D_COMPACT);
H5Pset_alloc_time(plist,H5D_ALLOC_TIME_EARLY);
dataset = H5Dcreate(file,…, plist);

– Raw data is stored in the dataset header
• Metadata and raw data are written/read in one I/0

operation
• Faster write and read

31

Compact storage benchmark

• Create a file with N 4KB datasets using regular and
compact storage (100 < N < 35000)

• Measure average time needed to write/read a
dataset in a file with N datasets

• Benchmark run on Linux 2.2.18 i686, 960MB memory
• timeofday function used to measure time

32

Writing a dataset

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

10
0

41
00

81
00

12
10

0
16

10
0

20
10

0
24

10
0

28
10

0
32

10
0

Number of datasets (4KB size)

A
ve

ra
ge

 ti
m

e
to

 w
ri

te
 a

da

ta
se

t i
n

se
co

nd
s

Regular storage
Compact storage

33

Reading latest written dataset

0

0.005

0.01

0.015

0.02

0.025

10
0

41
00

81
00

12
10

0
16

10
0

20
10

0
24

10
0

28
10

0
32

10
0

Number of datasets (4KB size)

Ti
m

e
in

 s
ec

on
ds

Regular storage
Compact storage

34

Parallel Performance

• Tuning knobs
• h5perf benchmark

35

Parallel HDF + MPI

Parallel
Application

Parallel
Application

Parallel
Application

Parallel
Application User Applications

HDF library

Parallel I/O layer

Parallel File systemsSP GPFSO2K Unix I/O

MPI-IO

TFLOPS PFS

PHDF5 Implementation Layers

36

File Level Knobs (Parallel)

• H5Pset_alignment
• H5Pset_fapl_split
• H5Pset_fapl_mpio

37

H5Pset_alignment

• Sets two parameters
– Threshold

• Minimum size of object for alignment to take effect
• Default 1 byte

– Alignment
• Allocate object at the next multiple of alignment
• Default 1 byte

• Example: (threshold, alignment) = (1024, 4K)
– All objects of 1024 or more bytes starts at the boundary

of 4KB

38

H5Pset_alignment
Benefits

• In general, the default (no alignment) is good for
single process serial access since the OS already
manages buffering.

• For some parallel file systems such as GPFS, an
alignment of the disk block size improves I/O
speeds.

39

H5Pset_fapl_split

• HDF5 splits to two files
– Metadata file for metadata
– Raw data file for raw data (array data)

• Significant I/O improvement if
– metadata file is stored in Unix file systems (good for

many small I/O)
– raw data file is stored in Parallel file systems (good for

large I/O).

40

Write
s

p
eeds

o f

Standard
vs

.
S

p
lit

-
file

H
DF5
vs

.
M

2 4 8 16

M
B

/s
ec

Number of processes

4

8

12

16

20

MPI I/O write (one file)

Split-file HDF5 write

Standard HDF5 write (one file)

Results for ASCI Red machine at Sandia National Laboratory

•Each process writes 10MB of array data

41

I/O Hints via
H5Pset_fapl_mpio

• MPI-IO hints can be passed to the MPI-IO layer via
the Info parameter of H5Pset_fapl_mpio

• Examples
– Telling Romio to use 2-phase I/O speeds up collective

I/O in the ASCI Red machine at Livermore National
Laboratory

– Setting IBM_largeblock_io=true speeds up GPFS write
speeds

42

2-Phase I/O

p0 p1 p2 p3 p4 p5

p0 p1

disk

- Interleaving

43

2-Phase I/O

• Aggregation (available in ROMIO 1.2.4); useful for
• filling I/O buffers
• moving data to processors that have better connectivity

p0 p1 p2 p3 p4 p5

disk

p0 p1

44

Effects of I/O Hints
IBM_largeblock_io

• GPFS at Livermore National Laboratory ASCI Blue machine
– 4 nodes, 16 tasks
– Total data size 1024MB
– I/O buffer size 1MB

0
50

100
150
200
250
300
350
400

MPI-IO PHDF5 MPI-IO PHDF5

IBM_largeblock_io=false IBM_largeblock_io=true

16 write
16 read

45

Parallel I/O
Benchmark Tool

• h5perf
– Benchmark test I/O performance
– Comes with HDF5 binaries
– Writes datasets into the file by hyperslabs
– Variables:

• Number of datasets
• Number of processes
• Number of bytes per process per dataset to

write/read
• Threshold for data alignment
• Size of transfer buffer (memory buffer) and block per

process
• Collective vs. Independent
• Interleaved blocks vs. contiguous blocks

46

Parallel I/O
Benchmark Tool

• Four kinds of API
– Parallel HDF5
– MPI-IO
– Native parallel (e.g., gpfs, pvfs)
– POSIX (open, close, lseek, read, write)

• Provides standard approach to measure and
compare performance results

47

Parallel I/O Tuning

• Challenging task
– Performance vary from platform to platform
– Complex access patterns
– Many layers can be involved

• SAF-HDF5-MPIO-GPFS

48

Parallel I/O Tuning
Example of transfer buffer effect

• h5perf run on NERSC IBM SP
• 4 processes, 4 nodes, 1MB file, 1 dataset, 256KB

data per process to write
• Maximum achieved write speed in MB/sec

49

Parallel I/O Tuning
Example of transfer buffer effect on SP2

0

50

100
150

200

250

300

write open-write-
close

write open-write-
close

128 256

Transfer buffer size in KB

S
pe

ed
 in

 M
B

/s
ec

POSIX

MPI-IO

PHDF5

HDF5

50

Parallel I/O Tuning
Example of transfer buffer effect on SP2

0
20
40
60
80

100
120
140
160
180

read open-read-
close

read open-read-
close

128 256

Transfer buffer size in KB

S
pe

ed
 in

 M
B

/s
ec

POSIX

MPI-IO

PHDF5

51

Parallel I/O Tuning
Example of transfer buffer effect on SGI

0
20
40
60
80

100
120
140
160

write open-write-
close

write open-write-
close

128 256

Transfer buffer size in KB

S
pe

ed
 in

 M
B

/s
ec

POSIX

MPI-IO

PHDF5

HDF5

52

Summery results for Blue

• h5perf run on ASCI IBM SP Blue
• 1 to 4 processes per node, 16 nodes, 256KB data

per process to write/read, 256 KB transfer size,
256KB block size

• Varied:
– Number of tasks per node (1 – 4)
– Number of datasets 50, 100, 200
– Independent or collective calls

53

HDF5 collective write results

52.66
2 TPN

25 – 4540 – 60200

66.24
3 TPN

50 – 6040 – 60100

68.47
3 TPN

50 – 6020 – 3050

MPI-IO best
result
Speed in
MB/sec

Tasks per
node (TPN)
3 – 4
Speed in
MB/sec

Tasks per
node (TPN)
1 – 2
Speed in
MB.sec

Number of
datasets

54

HDF5 independent write results

61.06
3 TPN

35 – 6020 – 35200

31.09
4 TPN

20 – 3520 – 35100

32.14
2 TPN

20 – 3520 – 3550

MPI-IO best
result
Speed in
MB/sec

Tasks per
node 3 – 4
Speed in
MB/sec

Tasks per
node 1 – 2
Speed in
MB.sec

Number of
datasets

55

Read performance

330 - 2935100 - 650Independent

335 - 180075 - 200Collective

MPI-IO
Speed in MB/sec

PHDF5
Speed in MB/sec

Mode

56

Future Parallel HDF5 Features

• Flexible PHDF5
– Reduces the needs of collective calls
– Set aside a process for independent calls coordination
– Estimated release date: end of 2002

57

Useful Parallel HDF Links

• Parallel HDF information site
– http://hdf.ncsa.uiuc.edu/Parallel_HDF/

• Parallel HDF mailing list
– hdfparallel@ncsa.uiuc.edu

• Parallel HDF5 tutorial available at
– http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor

